
Divide & Conquer

Solve a problem P by solving a hierarchy of subproblems.

The hierarchy is represented by a tree.
I P is the root of the tree.
I A node can be solved, if its children are solved.
I Leaves are directly solvable.

Crucial observation: often children of a node can be solved
independently.
A sequential divide & conquer algorithm can be parallelized,
provided the process of solving a node from its children can be
parallelized.

Divide & Conquer and Dynamic Programming Divide & Conquer 1 / 18

http://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Sorting

Odd-even transposition sort
I sorts n keys with p processes in time O(n

p · log n
p + n).

I However poor compute/communicate ratio: communication
dominates merging in each phase.

I Efficient only for few, i.e., p = O(log2 n) processes.

Parallelizations of quicksort turn out to be superior.
I Quicksort determines a splitter M, recursively sorts all keys

smaller than M and then all keys larger than M.
I Parallelize the task of determining all keys smaller, resp.

larger than M.
I The two subproblems should have roughly same size:

M should be an approximate median.

Divide & Conquer and Dynamic Programming Divide & Conquer 2 / 18

http://en.wikipedia.org/wiki/Quicksort

Parallel Quicksort

(1) An approximate median M is determined.
(2) Each process i partitions its keys according to M and

determines smalleri , resp. largeri , the number of keys
smaller, resp. larger than M. // Time O(n

p).

(3) Apply MPI_Scan to determine the two prefix sums
∑i

j=1 smallerj

and
∑i

j=1 largerj // Time O(log2 p).

(4) Broadcast the number k of keys smaller than M.
I Recursively: the first p · k

n−1 processes sort the smaller keys, the
remaining processes sort the larger keys.

I Each process determines the new positions of keys and initiates a
send. // Time O(n

p).
// The sequential quicksort is applied whenever only one process
// is assigned. Otherwise recursively sort the first k keys and the last
// n − k − 1 keys in parallel.

Divide & Conquer and Dynamic Programming Parallel Quicksort 3 / 18

Parallel Quicksort: The Analysis

If we do not charge for computing an approximate median:
I O(log2 p) recursive steps are performed until the sorting problem is

reduced to size O(n
p).

I There are at most O(n
p + log2 p) compute and communication steps

for one recursive step.
I Including the final sorting step, the run time is bounded by

O((n
p + log2 p) · log2 p + n

p log2
n
p) = O(n

p · log2 n + log2
2 p).

I Constant efficiency for n = Ω(p · log2 p).
To compute an approximate median:

I randomly select a key M and broadcast M in time O(log2 p)
I or let all processes determine a local median. A distinguished

process gathers all local medians in time O(p) and broadcasts an
approximate median. The new running time is
O(n

p · log2 n + p · log2 p) with constant efficiency for n = Ω(p2).

Divide & Conquer and Dynamic Programming Parallel Quicksort 4 / 18

Parallel Quicksort: Discussion

Computation versus communication:
I The compute time per recursive step is dominated by the time O(n

p)

to partition the keys.
I Communication, when rearranging keys, also requires time O(n

p).
I Communication dominates computation.

The run time is dominated by the slowest recursive call.
Determine local medians carefully:

I For instance, let all processes sort their keys immediately and keep
their keys sorted by merging when rearranging keys.

I Each process chooses the exact median as local median without
any delay.

I The final sorting step is not necessary any more.

Divide & Conquer and Dynamic Programming Parallel Quicksort 5 / 18

Sample Sort

The idea: compress the O(log2 p) iterations of quicksort into
essentially one phase:

I select a sorted sample of p − 1 splitters
I and partition keys according to the sample.

Questions:
I when to sort and
I how to determine the sample?

Divide & Conquer and Dynamic Programming Sample Sort 6 / 18

Sample Sort: The Algorithm

(1) Each process sorts its n
p keys sequentially and

I afterwards determines a sample of size s .
I Process 1 gathers all samples,
I sorts the sample keys sequentially,
I determines the final sample S of size p − 1 and broadcasts S.

// O(n
p log2

n
p + ps log2 ps) compute steps and

// communication O(p · s + p log2 p).
(2) Each process partitions its keys according to sample S.

Per process: the p sorted subsequences are distributed by an
all-to-all personalized broadcast.
// Compute time O(p · log2

n
p) and communication O(n

p).
(3) Each process merges the p sorted sequences in time

O(n
p · log2 p).

Divide & Conquer and Dynamic Programming Sample Sort 7 / 18

Sample Sort: The Analysis

Assume that p · s ≤ n/p and equivalently that s ≤ n/p2 holds.
I Sorting all n

p keys dominates over sorting the gathered samples.
I The computing time is bounded by

O(n
p · log2

n
p + p · log2

n
p + n

p · log2 p) = O(n
p log2 n + p · log2

n
p).

I Communication is bounded by
O(p · s + p · log2 p + n

p) = O(p · log2 p + n
p), again since p · s ≤ n/p.

Choice of parameters:
I If s = p, then a good sample can be computed.
I If n = Ω(p3), then sample sort runs in time O(n

p · log2 n) with
communication O(n

p).
I Computation dominates over communication, if n is large.

Divide & Conquer and Dynamic Programming Sample Sort 8 / 18

Dynamic Programming

Solve a problem P by solving a hierarchy of subproblems.

The hierarchy is represented by a directed graph without cycles.
I P is the sink, i.e., the only node with fanout zero.
I A node can be solved, if its immediate predecessors are solved.
I Sources (nodes with fanin zero) are directly solvable.

Typically subproblems have smaller complexity and all
subproblems of same complexity can be solved independently.
A sequential dynamic programming algorithm can be parallelized,
provided all subproblems of “same complexity” can be solved in
parallel.
Dynamic programming has many applications for instance in
bioinformatics.

Divide & Conquer and Dynamic Programming Dynamic Programming 9 / 18

http://en.wikipedia.org/wiki/Dynamic_programming

Transitive Closure

We are given a directed graph G = (V ,E) with node set
V = {1, . . . ,n}. Determine the transitive closure graph G = (V ,E):
the edge (i , j) belongs to E iff there is a path in G from i to j .

A[i , j] =

{
1 (i , j) ∈ E
0 otherwise.

is the adjacency matrix of G.

Warshall’s Algorithm:
for k=1 to n do

for i=1 to n do
for j=1 to n do

A[i,j] = A[i,j] or (A[i,k] and A[k,j]);

Run time = O(n3).
Correctness:

I Invariant: After the outer loop for k − 1 completes, A[i , j] = 1 iff
there is a path from i to j with intermediate nodes in {1, . . . k − 1}.

I Invariant holds after the outer loop for k completes.

Divide & Conquer and Dynamic Programming The Algorithms of Floyd and Warshall 10 / 18

http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm

Parallelizing Warshall’s Algorithm

We parallelize the inner i , j-loops, but keep the outer k loop.
For rowwise decomposition of the adjacency matrix A:

I If we have reached k , then all updates
A[i , j] = A[i , j] ∨ (A[i , k] ∧ A[k , j]) have to be performed in parallel.

I The process knowing row k has to broadcast its row.
I Compute time per k iteration = O(n2

p) and broadcast time

O(n · log2 p). Total run time O(n3

p + n2 · log2 p).

The checkerboard decomposition is better:
I The process holding A[i , k], resp. A[k , j], has to broadcast its values

in its row, resp. column, of the mesh of processes.
I The communication time per k -iteration is bounded by

O(n√
p log2

√
p) and the total run time is O(n3

p + n2
√

p log2
√

p)).

Many “small” broadcasts for the checkerboard decomposition
replace the “big” broadcast for the rowwise decomposition.

Divide & Conquer and Dynamic Programming The Algorithms of Floyd and Warshall 11 / 18

The All-Pairs-Shortest-Path Problem

For a directed graph G = (V ,E) with nodes V = {1, . . . ,n} and edge
weights w(e), determine the length of a shortest path from i to j for
any pair (i , j) of nodes.

B[i , j] =

{
w(i , j) (i , j) ∈ E ,
∞ otherwise.

is the weighted distance matrix.

Floyd’s Algorithm:
for k=1 to n do

for i=1 to n do
for j=1 to n do

B[i,j] = min (B[i,j], B[i,k] + B[k,j]);

Run time = O(n3).
Correctness: After completing the iteration for k ,

B[i , j] is the length of a shortest path from i to j with intermediate
nodes in {1, . . . , k}.

Divide & Conquer and Dynamic Programming The Algorithms of Floyd and Warshall 12 / 18

Parallelizing Floyd’s Algorithm

Proceed as for Warshall’s Algorithm:
I keep the outer for-loop and parallelize the inner i , j-loops.
I The checkerboard decomposition is again better.

Drawback: Warshall’s and Flody’s algorithm are adequate only
for dense graphs (i.e., graphs with many edges).

I Otherwise repeated applications of depth-first search are faster
than Warshall

I and repeated applications of Dijkstra are faster then Floyd.

Divide & Conquer and Dynamic Programming The Algorithms of Floyd and Warshall 13 / 18

Similarity of Two Strings

Often similarities of DNA or RNA sequences imply functional similarity.
Determine the similarity of two sequences assuming unknown point
mutations such as insertions, deletions and substitutions.

View a DNA sequence as a word over the alphabet
Σ = {adenine, cytosine, guanine, thymine}.
How many insertions, deletions or substitutions of letters are
necessary to obtain sequence v from sequence u?
A slightly different perspective:

I Imagine a blank symbol “−” inserted in several positions of u as
well as v .

I The new strings u∗ and v∗ are called an alignment iff they have
identical length and u∗i 6= − or v∗i 6= − for all positions i .

Divide & Conquer and Dynamic Programming Global Pairwise Alignment 14 / 18

Global Pairwise Alignment

Assume that u∗, v∗ is an alignment of strings u and v .

How to get from u to v?
I If u∗i = −, then insert v∗i into u,
I if v∗i = −, then delete u∗i
I and if both u∗i 6= v∗i are different from the blank symbol, then

replace u∗i for v∗i .
We want an alignment which verifies maximal similarity between u
and v .

I The function d : (Σ ∪ {−})× (Σ ∪ {−})→ R penalizes a
disagreement with a low or negative score.

I The similarity of an alignment u∗, v∗ of u and v is defined by
s(u∗, v∗) =

∑
i d(u∗i , v

∗
i).

Determine an alignment u∗, v∗ of u, v with maximal score s(u∗, v∗).

Divide & Conquer and Dynamic Programming Global Pairwise Alignment 15 / 18

http://en.wikipedia.org/wiki/Sequence_alignment

The Idea

Let ui = u1 · · · ui be a prefix of u and let v j = v1 · · · vj be a prefix of v .
Define D(i , j) as the maximal score of an alignment of ui and v j .

How does an optimal alignment between ui and v j look like?
I Either it aligns the last letter of v j with the blank symbol
I or it aligns the last letter of ui with the blank symbol
I or it aligns the last letters of ui and v j .

In either case the alignment of the remaining symbols has to be
optimal.

D(i , j) =
max{D(i , j−1)+d(−, vj),D(i−1, j)+d(ui ,−),D(i−1, j−1)+d(ui , vj)}.

Divide & Conquer and Dynamic Programming Global Pairwise Alignment 16 / 18

The Algorithm of Needleman-Wunsch

(1) // Initialization
D(0,0) = 0;
for (i = 1; i <= |u|; i + +)

D(i ,0) =
∑i

k=1 d(uk ,−);
for (j = 1; j <= |v |; j + +)

D(0, j) =
∑j

k=1 d(−, vk);
(2) // Computation

for (i = 1; i <= |u|; i + +)
for (j = 1; j <= |v |; j + +)

D(i , j) = max
{D(i , j − 1) + d(−, vj),D(i − 1, j) + d(ui ,−),
D(i − 1, j − 1) + d(ui , vj)}

The run time is bounded by O(|u| · |v |).

Divide & Conquer and Dynamic Programming Global Pairwise Alignment 17 / 18

http://en.wikipedia.org/wiki/Needleman-Wunsch_algorithm

A Parallelization of Needleman-Wunsch

To determine D(i , j) we only need to know D(i ′, j ′) for i ′ + j ′ < i + j .
Reorganize step (2) of Needleman-Wunsch:

I we work with an outer k -loop and compute D(i , k − i) with an inner
i-loop.

I Parallelize the inner loop.
Choose the rowwise decomposition of the score matrix D. We
have |u|+ |v | phases and compute all entries D(i , k − i) in phase
k .

I If a process becomes active, it evaluates its portion of the score
matrix D according to increasing component sum.

I The process begins with boundary pairs (i , k − i) whose solution it
immediately communicates to the respective neighbor process.

The run time for |u| = |v | = n:
I per phase communicate two boundary pairs and compute in time

O(n
p).

I The total run time is bounded by O(n2

p + n).

Divide & Conquer and Dynamic Programming Global Pairwise Alignment 18 / 18

	Divide & Conquer and Dynamic Programming
	Divide & Conquer
	Parallel Quicksort
	Sample Sort
	Dynamic Programming
	The Algorithms of Floyd and Warshall
	Global Pairwise Alignment

